

8-bit
Microcontrollers

Application Note

Rev. 2500C–AVR–04/08

AVR033: Getting Started with the
CodeVisionAVR C Compiler

Features
• Installing and Configuring CodeVisionAVR to Work with the Atmel STK®500 Starter

Kit and AVR Studio® Debugger
• Creating a New Project Using the CodeWizardAVR Automatic Program Generator
• Editing and Compiling the C Code
• Loading the Executable Code into the Target Microcontroller on the STK500 Starter

Kit

1 Introduction
The purpose of this application note is to guide the user through the preparation of
an example C program using the CodeVisionAVR C Compiler. The example,
which is the subject of this application note, is a simple program for the Atmel
ATmega8515 microcontroller on the STK500 starter kit.

Questions regarding CodeVisionAVR C Compiler should be addressed to HP
InfoTech S.R.L. (http://www.hpinfotech.ro).

2 AVR033

2 Preparation
Install the CodeVisionAVR C Compiler in the default directory (“C:\cvavr”), and the
Atmel AVR Studio debugger in the default directory (“C:\Program
Files\Atmel\AVRTools\AVR Studio4”).

Set up the starter kit according to the instructions in the STK500 User Guide. Make
sure that the power is off before inserting the ATmega8515 chip into the appropriate
socket (marked SCKT3000D3). Set the VTARGET, RESET, and XTAL1 jumpers.
Also, set the OSCSEL jumper between pins 1 and 2.

Connect one 10-pin ribbon cable between the PORTB and LEDs headers to allow for
the state of ATmega8515’s PORTB outputs to be displayed. Then connect one 6-pin
ribbon cable between the ISP6PIN and SPROG3 headers. This will allow the
CodeVisionAVR IDE to automatically program the AVR chip after a successful
compilation, if the programmer is correctly configured.

To configure the programmer, start the CodeVisionAVR IDE and select the
“Settings→Programmer” menu option. The dialog window shown in Figure 2-1 will
open.

Figure 2-1. Programmer Settings.

Set the AVR Chip Programmer Type to “Atmel STK500/AVRISP”, and the
Communication Port to the one used with the STK500 starter kit on your system.

In order to be able to invoke the AVR Studio debugger from within the
CodeVisionAVR IDE, the location of AVR Studio must be set. To do this, select the
“Settings→Debugger” menu option. The dialog window as shown in Figure 2-2 will
open.

2500C–AVR–04/08

 AVR033

Figure 2-2. Debugger Settings.

Select “C:\Program Files\Atmel\AVRTools\AVR Studio4\AvrStudio.exe” using the
button, then press the “OK” button to confirm.

3 Creating a New Project
In order to create a new project, select the “File→New” menu option or press the
toolbar button. The dialog window shown in Figure 3-1 will be displayed.

Figure 3-1. New Project Dialog.

Select “Project”, press “OK”, and the dialog window shown in Figure 3-2 will be
displayed.

Figure 3-2. Confirmation Dialog.

Press “Yes” to use the CodeWizardAVR Automatic Program Generator, and the
dialog window shown in Figure 4-1 will open.

 3

2500C–AVR–04/08

4 AVR033

4 Using the CodeWizardAVR Automatic Program Generator
The CodeWizardAVR simplifies the task of writing start-up code for different AVR
microcontrollers.

4.1 Configuring the Chip and Clock Settings
For this example project, we shall use the ATmega8515 microcontroller and the clock
rate 3.68 MHz, since that is the clock rate on the STK500 starter kit. The resulting
settings window is shown in Figure 4-1.

Figure 4-1. Chip Settings for CodeWizardAVR.

2500C–AVR–04/08

 AVR033

5 Configuring the Input/Output Ports
Select the “Ports” tab to determine how the I/O ports are to be initialized for the target
system.

The default setting is to have the ports for all the target systems set as inputs (Data
Direction bits to be all 1s) in their Tri-state mode. However, for this example project,
we want to set Port B (by selecting the Port B tab) to be output only. This is done by
setting all the Data Direction bits to Out (by clicking on them). We also set the Output
Values to be all 1s, which will cause the LEDs on the STK500 to initially be turned off.
The resulting settings window is shown in Figure 5-1.

Figure 5-1. Port Settings for CodeWizardAVR.

 5

2500C–AVR–04/08

6 AVR033

6 Configuring Timer1
Select the “Timers” tab to set up the behaviour of the timers.

For this project, we want to configure Timer1 to generate overflow interrupts as
shown in Figure 6-1.

We have selected a clock rate of 3.594 kHz, which is the system clock of 3.68 MHz
divided by 1024. The timer is set to operate in the default “Normal Top=FFFFh” mode
and to generate interrupts on overflow. To be able to update the LEDs twice per
second, we need to reinitialize the Timer1 value to 0x10000-(3594/2) = 0xF8FB on
every overflow.

Figure 6-1. Timer Settings for CodeWizardAVR.

2500C–AVR–04/08

 AVR033

7 Completing the Project
By selecting the “File→Generate, Save and Exit” menu option, the CodeWizardAVR
will generate a skeleton C program with, in this case, Port B and Timer1 Overflow
Interrupt set up correctly. A dialog window for saving the source code, shown in
Figure 7-1, will then open.

Figure 7-1. Save Source File Dialog.

Create a new folder named “C:\cvavr\led” to hold all the files of our sample project.
Open this directory, enter the file name of the C source file, “led.c”, and press the
“Save” button. A dialog window for saving the project file, shown in Figure 7-2, will
open.

 7

2500C–AVR–04/08

8 AVR033

Figure 7-2. Save Project Dialog.

Here, specify the file name for the project, “led.prj”, and save it in the same folder as
the C file (“C:\cvavr\led”).

Finally, we will be prompted to save the CodeWizardAVR project file, as shown in
Figure 7-3. Saving all the CodeWizardAVR peripherals configuration in the “led.cwp”
project file will allow us to reuse some of our initialization code in future projects.

2500C–AVR–04/08

 AVR033

Figure 7-3. Save CodeWizardAVR Project Dialog.

Specify the file name “led.cwp” and press the “Save” button.

The “led.c” source file will now automatically be opened, and we may start editing the
code produced by the CodeWizardAVR. In this example project, only the interrupt
handler code needs to be amended to manage the LEDs. This is shown below. The
small bit of code that was added is shown with bold font, while the remainder was
supplied by the CodeWizardAVR.

// the LED 0 on PORTB will be ON

unsigned char led_status=0xFE;

// Timer 1 overflow interrupt service routine interrupt [TIM1_OVF]
void timer1_ovf_isr(void) {

 // Reinitialize Timer 1 value

 TCNT1H=0xF8;

 TCNT1L=0xFB;

 // Place your code here

 // move the LED

 led_status<<=1;

 led_status|=1;

 if (led_status==0xFF) led_status=0xFE;

 // turn ON the appropriate LED

 PORTB=led_status;

}

 9

2500C–AVR–04/08

10 AVR033

8 Viewing or Modifying the Project Configuration
At any time, the project configuration may be changed using the “Project→Configure”
menu option or by pressing the toolbar button. This will open the dialog window
shown in Figure 8-1.

Figure 8-1. Project Input Files Configuration Tab.

To add or remove files from the project, select the “Files” tab and click the “Add”
button, or select a file in the project file tree and click the “Remove” button. If you wish
to rename a file in the project, select it in the project file tree and press the “Edit File
Name” button.

2500C–AVR–04/08

 AVR033

Figure 8-2. Project Output Directories Configuration Tab.

The “Output Directories” tab, shown in Figure 8-2, allows you to specify in which
directories the compiler shall place the files resulting from the Build process. With
these default settings, the executable for this example project, “led.hex”, will be
located in the directory “C:\cvavr\led\Exe” after a successful build.

 11

2500C–AVR–04/08

12 AVR033

Figure 8-3. Project C Compiler Configuration Tab.

To change the target microcontroller, the clock rate or the various compiler options
select the “C Compiler” tab. The dialog window shown in Figure 8-3 opens, and the
configuration may be altered.

2500C–AVR–04/08

 AVR033

Figure 8-4. Project After Build Configuration Tab.

On the “After Build” tab, shown in Figure 8-4, various actions to be taken after the
Build process has completed, may be selected. For the purposes of this example, the
“Program the Chip” option must be checked to enable automatic programming of the
AVR chip.

It is important to set the SCK Freq. value to 230400 Hz, so that ATmega8515 chips
that come from the factory with the CKSEL3..0 fuse bits set to use the internal 1MHz
oscillator, can be successfully programmed.

Please note that the CKSEL3..0 fuse bits will be set to 1111 so that the external 3.68
MHz clock, supplied by the STK500, will be used. (The CKSEL3..0=0 checkboxes
should not be checked, or the fuse bits will be programmed to 0.)

 13

2500C–AVR–04/08

14 AVR033

9 Building the Project
The “Project” pull-down menu has the “Build” option. Click on it or on the button on
the toolbar. When this process is completed, the Information window, shown in Figure
9-1, will be displayed.

Figure 9-1. Information Window, Compiler Tab.

This window shows the RAM, EEPROM and FLASH memory usage.

2500C–AVR–04/08

 AVR033

Figure 9-2. Information Window, Assembler Tab.

If the “Assembler” tab is clicked, the assembly results are displayed as shown in
Figure 9-2.

 15

2500C–AVR–04/08

16 AVR033

Figure 9-3. Information Window, Programmer Tab.

Selecting the “Programmer” tab displays the value of the Chip Programming Counter,
as shown in Figure 9-3. Pressing the “Set Counter” button will initialize this counter.

If the Build process was successful, power-up the STK500 starter kit and press the
“Program the chip” button to start the automatic chip programming. After the
programming process is complete, the code will start to execute in the target
microcontroller on the STK500 starter kit.

2500C–AVR–04/08

 AVR033

 17

2500C–AVR–04/08

10 Short Reference

10.1 Preparations
1. Install the CodeVisionAVR C Compiler

2. Install the Atmel AVR Studio Debugger
3. Install the Atmel STK500 Starter Kit
4. Configure the STK500 Programmer Support in the CodeVisionAVR IDE by

selecting: Settings→Programmer
AVR Chip Programmer Type: STK500 + corresponding communication
port

5. Configure the AVR Studio Support in the CodeVisionAVR IDE by selecting:
Settings→Debugger
“C:\Program Files\Atmel\AVRTools\AVR Studio4\AvrStudio.exe”

10.2 Getting Started
1. Create a new project by selecting:

File→New→Select Project

2. Specify that the CodeWizardAVR will be used for producing the C source
and project files: Use the CodeWizard?→Yes

3. In the CodeWizardAVR window specify the chip type and clock frequency:
Chip→Chip: ATmega8515, Clock: 3.86MHz

4. Configure the I/O Ports: Ports→Port B→
Data Direction: all Outputs, Output Value: all 1's

5. Configure Timer1: Timers→Timer1→
Clock Value: 3.594kHz, Interrupt on: Timer1 Overflow, Value: F8FB
hexadecimal

6. Generate the C source, C project and CodeWizardAVR project files by
selecting:
File→Generate, Save and Exit→
Create new directory: “C:\cvavr\led”→
Save: “led.c”, Save: “led.prj” , Save: “led.cwp”

7. Edit the C source code
8. View or Modify the Project Configuration by selecting

Project→Configure→
After Build→Program the Chip → SCK Frequency: 230400Hz

9. Compile the program by selecting:
Project→ Build

10. Automatically program the ATmega8515 chip on the STK500 starter kit:
Apply power→Information→Program chip.

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, STK®, AVR Studio® and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

2500C–AVR–04/08

	1 Introduction
	2 Preparation
	3 Creating a New Project
	4 Using the CodeWizardAVR Automatic Program Generator
	4.1 Configuring the Chip and Clock Settings

	5 Configuring the Input/Output Ports
	6 Configuring Timer1
	7 Completing the Project
	8 Viewing or Modifying the Project Configuration
	9 Building the Project
	10 Short Reference
	10.1 Preparations
	10.2 Getting Started

